ECE G287 Optical Detectors Problem Set 2 1. Beginning from the definition that $p = \int_{-\infty}^{E_v} (1 - f(E)) N(E) dE$ and assuming a parabolic isotropic hole band $E=(\hbar k)^2/2m^*$ show that $$p = 2\left(\frac{2\pi m^* kT}{\hbar^2}\right)^{3/2} e^{-(E_f - E_v)/kT}$$ if it is assumed that $E_f E >> kT$ for all the states in the valence band. 2. Find an expression for N(E) (= number of electron states between E and E+dE) for the conduction band in silicon that has 6 pockets, each described by a longitudinal mass of m_e =0.98 m_o and a transverse mass of m_e =0.19 m_o (m_o =free electron mass=9.11 × 10⁻³¹ kg.), so that: $$E = \frac{(\hbar k_{z})^{2}}{2m_{\ell}} + \frac{(\hbar k_{x})^{2}}{2m_{\ell}} + \frac{(\hbar k_{y})^{2}}{2m_{\ell}}$$ Then show that for E_c - E_f >>kT the density of electrons in the conduction band can be given by $$n = 2 \left(\frac{2\pi m_d^* kT}{\hbar^2} \right)^{3/2} e^{-(E_c - E_f)/kT}$$ and find a value for m_d^* . - 3. Consider a sample of silicon that has N_d =3 x 10^{17} cm⁻³ phosphorus donors located at E_d = E_c -44meV (44 meV below the conduction band edge). The energy gap is E_c - E_v = 1.11 eV. Assume the electron density of states mass = 1.1 m_o and a hole density of states mass = 0.55 m_o and you can assume that $(E_c$ - E_f) and $(E_f$ - E_v) >> kT. The number of electrons excited from the donor level is equal to the density of ionized donor states N_d ⁺ = N_d (1-f(E_d)). By numerically solving for the condition that $n = N_d$ ⁺ + p, find the position of the Fermi level E_f for T=4.2K, 77K, 300K, and 600K.. What percentage of the donor states are ionized at each temperature? Is the condition that $(E_c$ - E_f) and $(E_f$ - E_v) >> kT satisfied at each temperature. - 4. Assuming an abrupt junction with N_d density of donors on the n-side and N_a density of acceptors on the p-side, derive expressions for the depletion region width $W(V_a)$ and the junction capacitance $C(V_a)$ as a function of applied voltage V_a . Compare your expression for $C(V_a)$ with a simple expression that you would get assuming a simple parallel-plate capacitor with the depletion charge separated by $W(V_a)$. 5. Consider a two-dimensional electron gas in a GaAs heterostructure that consists of a single layer of GaAs of thickness *d* between two layers of GaAlAs. The electron energy bands of the conduction band electrons trapped in the "quantum well" between the two GaAlAs layers are given by: $$E = E_c + E_n + \frac{(\hbar k_x)^2}{2m^*} + \frac{(\hbar k_y)^2}{2m^*}$$ where E_c is the conduction band edge and $E_n = \frac{\hbar^2}{2m^*} (n\pi/d)^2$ (*n* is any positive integer, $n=1, 2, 3...$). Plot the energy of the bands for n=1, 2, and 3 vs. $k_t = \sqrt{k_x^2 + k_y^2}$ assuming that the thickness of the GaAs layer is d=150 Å and the effective mass of the conduction band in GaAs is m*=0.067 m_o. Plot the bands from $E=E_c$ to E_c+300 meV. (You can set the energy of the conduction band edge $E_c=0$.) Find an expression for the density of states N(E) where N(E)dE is the number of electron states between E and E + dE and plot N(E) vs. 0 < E < 300 meV for the 150Å GaAs quantum well described above.